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Another note on “Euclidean algorithms are
Gaussian” by V. Baladi and B. Vallée

by

Jungwon Lee and Hae-Sang Sun (Ulsan)

1. Introduction. Every rational number 0 < r < 1 has a unique,
simple finite continued fraction expansion r = [0;m1, . . . ,m`] with integers
m1, . . . ,m`−1 ≥ 1 and m` ≥ 2. One can regard the length ` := `(r) of the
continued fraction as a random variable on the set of rational numbers with
a fixed denominator,

ΣN = {m/N | 1 ≤ m < N, (m,N) = 1},
equipped with the uniform probability. It has been expected that ` follows
the asymptotic Gaussian distribution as N goes to infinity.

A prominent result goes back to Hensley [5] who showed an average
version of this conjecture, i.e., the asymptotic Gaussian distribution of ` on
the larger probability space

ΩN = {u/v | 1 ≤ u < v ≤ N, (u, v) = 1}
with the uniform probability PN . The result was further generalised by Bal-
adi and Vallée [1] in a remarkable way that is based on the dynamical anal-
ysis of the Euclidean algorithm.

For r ∈ ΩN , Baladi and Vallée considered a non-negative real value c(m)
associated to each possible digit m ≥ 1 of the continued fraction expansion
of r, with one mild assumption c(m) = O(logm), and they defined the total

cost C of r by C(r) :=
∑`(r)

i=1 c(mi). Then C can be regarded as a random
variable on ΩN . They proved:

Theorem A (Central Limit Theorem, [1]). The distribution of the to-
tal cost C on ΩN is asymptotically Gaussian, with speed of convergence
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O(1/
√

logN), i.e., for suitable positive constants µ and δ,
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[
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δ
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=

1√
2π
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−∞
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We remark that the work of Baladi–Vallée not only generalised Hensley’s
result that corresponds to c ≡ 1, but also improved it with an optimal error.

1.1. Main results. We shall outline the main steps of the proof of
Theorem A as follows. Let us first state a crucial criterion for the asymptotic
Gaussian distribution.

Theorem 1.1 (Hwang’s Quasi-Power Theorem, [1]). Assume that the
moment generating functions for a sequence of random variables XN on
probability spaces (ΞN ,PN ) are analytic in a neighborhood W of zero, and

EN [exp(wXN )] = exp(βNU(w) + V (w))(1 +O(κ−1N ))

with βN , κN → ∞ as N → ∞, and U(w), V (w) analytic on W , with
U ′′(0) 6= 0. Then the mean and variance satisfy

E(XN ) = βNU
′(0) + V ′(0) +O(κ−1N ),

V(XN ) = βNU
′′(0) + V ′′(0) +O(κ−1N ).

Further, the distribution of XN on ΞN is asymptotically Gaussian, with

speed of convergence O(κ−1N + β
−1/2
N ).

To obtain the quasi-power expression for the moment generating function
of the total cost C, Baladi and Vallée studied a certain Dirichlet series
whose coefficients are related to the generating function. A crucial point is
the observation that the Dirichlet series admits an alternative expression
in terms of the so-called transfer operator, and a Tauberian argument to
estimate the coefficients of the Dirichlet series is deduced from the spectral
analysis of the transfer operator.

However, Perron’s formula of order two used in [1, (2.19)] only provides
an estimate for iterated average sums of coefficients, which does not directly
yield the necessary quasi-power expression for the total cost C on ΩN . So
Baladi and Vallée introduced the smoothed probabilistic model ΩN (ε) con-
taining ΩN for sufficiently small ε = ε(N) and showed that the distribution
of C on ΩN (ε) is asymptotically Gaussian. By showing that the difference
between the two probabilities, on ΩN and ΩN (ε), is O(ε), they obtained the
result.

The purpose of this short article is to make a few remarks on the work
of Baladi–Vallée [1]. First, we obtain Theorem A without the smoothing
process. More precisely, it is possible to get directly a quasi-power estimate
for the moment generating function of C on ΩN by applying a version of
Perron’s formula with error terms. Furthermore, the smoothing process is
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also doable for ΣN , that is, there is an auxiliary space ΣN (ε) containing ΣN
(see Section 4 for a precise definition) on which the cost C is asymptotically
Gaussian:

Theorem B. The distribution of the total cost C on ΣN (ε) is asymp-
totically Gaussian, with speed of convergence O(1/

√
logN).

Finally, we present Question C, which is a ΣN -version of the last step
of the smoothing process, i.e., the statement that the difference between
two probabilistic models ΣN and ΣN (ε) is O(ε). The conjecture on the
asymptotic Gaussian behavior of the length ` of continued fractions on ΣN
immediately follows from an affirmative answer to this question.

2. Work of Baladi–Vallée. The distribution of the cost C on ΩN is
determined by the Lévy moment generating function

EN [exp(wC)] =
1

|ΩN |
∑
r∈ΩN

exp[wC(r)]

for complex w close enough to 0. Baladi and Vallée studied the Dirichlet
series

L(s, w) =
∑
n≥1

cn(w)

ns
, cn(w) =

∑
r∈Σn

exp[wC(r)],

for <s > 1 and |w| sufficiently small. Note that∑
n≤N

cn(w) =
∑
r∈ΩN

exp[wC(r)]

is essentially the moment generating function of C on ΩN . Therefore, the
statistics of C follows from Tauberian type arguments for L(s, w).

A crucial point is that analytic properties of L(s, w) can be investigated
by the following thermodynamical formalism, the so-called transfer operator
method. For r = u/v ∈ ΩN , executing the Euclidean algorithm on the inputs
u and v yields a unique continued fraction expansion r = [0;m1, . . . ,m`] with
m1, . . . ,m`−1 ≥ 1 and m` ≥ 2. Observe that each digit can be written as
mi = bT i+1(r)c, where T is the Gauss map

T : [0, 1]→ [0, 1], T (x) =
1

x
−
⌊

1

x

⌋
for x 6= 0, T (0) = 0.

Here, bxc denotes the integer part of x. The continued fraction expansions
can be viewed as rational trajectories of a one-dimensional dynamical system
([0, 1], T ) that reaches 0 in a finite number of steps.

Let H be the set of inverse branches of T that are of the form h[m](x) =
1/(m+ x) for some m ≥ 1. The digit cost c can be regarded as a function
on H via c(h[m]) := c(m). The weighted transfer operator Hs,w on C1([0, 1]),
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which depends on two complex parameters s and w, is defined by

Hs,w[f ](x) :=
∑
h∈H

exp[wc(h)] · |h′(x)|s · f ◦ h(x).

We write Fs,w for the same operator with H replaced by the final set F :={
1

m+x

∣∣ m ≥ 2
}
⊆ H.

Let Ω :=
⋃
n≥1Ωn and H∗ :=

⋃
n≥1Hn. The above arguments show that

each r = u/v ∈ Ω can be written as

u/v = h[m1] ◦ · · · ◦ h[m`(r)](0) =: h(0)

with h[mi] ∈ H, 1 ≤ i ≤ `(r) − 1 and h[m`(r)] ∈ F . Finally, one can observe

the following key relation between L(2s, w) and the transfer operator Hs,w:

L(2s, w) =
∑
r∈Ω

1

v2s
exp[wC(r)] =

∑
h∈H∗

|h′(0)|s exp[wc(h)]

= Fs,w ◦ (I −Hs,w)−1[1](0).

This relation and the estimate of the operator norm of (I − Hs,w)−1 due
to Dolgopyat [3] enable Baladi and Vallée to show that L(2s, w) can be
meromorphically continued to C and has a simple pole at s = σ(w), which
is analytic in w near 0 and σ(0) = 1. Furthermore, a crucial bound of
L(2s, w) is obtained on a vertical strip containing s = 1, as follows.

Lemma 2.1. For all ξ with 0 < ξ < 1/5, we can find α0 such that for
any α̂0 with 0 < α̂0 < α0 ≤ 1/2, there exist a neighborhood W ′ of 0 and
constants M,M ′ > 0 such that for all w ∈W ′ we have:

(1) <σ(w) > 1− (α0 − α̂0).
(2) L(2s, w) has only a simple pole at s = σ(w) in the strip |<s− 1| ≤ α0.
(3) |L(2s, w)| ≤M max(1, |t|ξ) on the vertical line <s = 1± α0, t = =s.
(4) |L(2s, w)| ≤M ′|t|ξ in the strip for sufficiently large |t|.

Proof. The first three statements are just [1, Lemma 8]. The statement
(4) comes from [1, Theorem 2].

Using the bound in Lemma 2.1 and the Perron formula of order two,
Baladi and Vallée showed that for 0 < γ̂ < α0,

(2.1)
∑
Q≤N

∑
n≤Q

cn(w) = A(w)N2σ(w)+1(1 +O(N−γ̂))

where A(w) is non-vanishing.

In order to get a result on C for ΩN , they first considered a smoothed
version of (2.1). In other words, for ε(N) = N−γ̂/2, it can be deduced from
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the formula (2.1) that

(2.2)
N∑

Q=N−bNε(N)c

∑
n≤Q

cn(w)

= bNε(N)cA(w)(2σ(w) + 1)N2σ(w)(1 +O(N−γ̂/2)).

This implies that the moment generating function EN [exp(wC)|ΩN (ε)] of
C on the auxiliary probability space

ΩN (ε) :=

N⋃
Q=N−bNε(N)c

ΩQ × {Q}

satisfies a quasi-power estimate

(2.3) EN [exp(wC)|ΩN (ε)]

=
A(w)(2σ(w) + 1)

3A(0)
N2(σ(w)−σ(0))(1 +O(N−γ̂/2)).

The definition of ΩN (ε) in [1] is invalid and the correct one can be found
in Cesaratto [2]. The formula (2.3) corresponds to the fact that C asymptot-
ically follows the Gaussian distribution on the smoothed probability space
ΩN (ε) due to Theorem 1.1.

For the last step, with the choice of ε(N), Baladi and Vallée proved that
the difference between the probabilities PN on ΩN and PN,ε on ΩN (ε) is
O(ε(N)). Note that PN and PN,ε are not defined on the same probability
space. However, they can be compared by dealing with sets AN,ε ⊆ ΩN (ε)
coming from subsets A ⊆ ΩN , which are essentially of the form

AN,ε :=

N⋃
Q=N−bNεc

(A ∩ΩQ)× {Q}.

In other words, for any A ⊆ ΩN ,

|PN (A)− PN,ε(AN,ε)| = O(ε(N)),

from which Baladi and Vallée deduced Theorem A.

Remark 2.2. They also established the Local Limit Theorem [1, The-
orem 4] for ` on ΩN . The result basically follows from the quasi-power
estimate for the moment generating function with the saddle-point method.
With the same µ and δ,

PN
[
x− 1

2δ
√

logN
<
`(r)− µ logN

δ
√

logN
≤ x+

1

2δ
√

logN

]
=

e−x
2/2

δ
√

2π logN
+O

(
1

logN

)
.
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3. Distributional analysis of C on ΩN . In this section, we give a
direct proof of Theorem A without using the smoothing process. Instead of
Perron’s formula of order two used in [1], we use a version of Perron’s formula
with error terms that is Lemma 3.19 in Titchmarsh [6]. Recall that Baladi–
Vallée used one without error estimates and that the smoothing process is
required to obtain the desired estimate for the moment generating function
of C on ΩN . However, the following version of the formula enables us to
obtain a direct quasi-power estimate for the original cost by taking the
optimal error term. Thus, we deduce the asymptotic Gaussian distribution
of C on ΩN from Theorem 1.1.

Theorem 3.1 (Truncated Perron’s Formula). Let F (s) =
∑

n≥1 an/n
s

for <(s) := σ > σa, the abscissa of absolute convergence of F (s). Then for
D > σa, one has∑

n≤x
an =

1

2πi

D+iT�

D−iT
F (s)

xs

s
ds+O

(
xD|F |(D)

T

)
+O

(
A(2x)x log x

T

)
+O

(
A(N) min

{
x

T |x−N |
, 1

})
,

where

|F |(σ) =
∑
n≥1

|an|
nσ

for σ > σa, N is the nearest integer to x, and an = O(A(n)), with A(n)
non-decreasing.

We first introduce the set up. For r ∈ ΩN , we write r = [0;m1, . . . ,m`].
Note that ` corresponds to the case c ≡ 1 and satisfies `(r) = O(logN).
Now, for a general c satisfying c(m) = O(logm), the Dirichlet series∑

m≥1
exp[wc(m)] · 1

(m+ x)2s

converges when (<s,<w) belongs to a real neighborhood of (1, 0). That is,
for <s near 1, exp[<w · c(m)] < m<s (∼ m1). Thus for each r, the total cost
satisfies

C(r) = c(m1) + · · ·+ c(m`) < η · log(m1 · · ·m`)

with η being sufficiently small. This implies that C(r) = O(logN) once we
show m1 · · ·m` ≤ N .

Lemma 3.2. For r ∈ ΩN , let r = [0;m1, . . . ,m`]. Then

m1 · · ·m` ≤ N.
Proof. Recall that we have the expression r = h[m1] ◦ · · · ◦ h[m`](0) with

inverse branches h[mi](x) = 1
mi+x

which correspond to
[
0 1
1 mi

]
∈ GL2(Z).
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With the canonical GL2(Z)-action on the rational numbers, r can be written
as

r = h[m1] ◦ · · · ◦ h[m`](0) =

[
0 1

1 m1

]
· · ·
[
0 1

1 m`

]
· 0

1
=
b

d

where
[
a b
c d

]
with ad− bc = ±1 is the product of the matrices on the L.H.S.

Therefore, we get m1 · · ·m` < d ≤ N by looking at the (2, 2)-component.

In this case,

cn(w) =
∑
r∈Σn

exp[wC(r)] = O(n1+k<w)

for some k > 0. Therefore, we may take A(n) = n1+k<w in Perron’s formula.
Together with a choice of optimal T , we have the following.

Theorem 3.3. For a non-vanishing B(w) and γ > 0, we have∑
n≤N

cn(w) = B(w)N2σ(w)(1 +O(N−γ)).

Proof. The analytic properties of L(2s, w), summarized in Lemma 2.1,
allow us to do contour integration using Cauchy’s residue theorem:

1

2πi

�

UT (w)

L(2s, w)
N2s

2s
d(2s) =

E(w)

σ(w)
N2σ(w).

Here E(w) is the residue of L(2s, w) at the simple pole s = σ(w), and UT (w)
is the positively oriented rectangle with vertices 1 + α0 + iT , 1 − α0 + iT ,
1−α0−iT , and 1+α0−iT . Together with Perron’s formula in Theorem 3.1,
we have ∑

n≤N
cn(w) =

E(w)

σ(w)
N2σ(w) +O

(
N2(1+α0)

T

)
+O

(
A(2N)N logN

T

)
+O(A(N))

+O

( 1−α0+iT�

1−α0−iT
|L(2s, w)|N

2(1−α0)

|s|
ds

)

+O

( 1+α0±iT�

1−α0±iT
|L(2s, w)|N

2<s

T
ds

)
.

Note that the last two error terms are from the contour integral, correspond-
ing to the left vertical side and the horizontal sides of the rectangle UT (w).
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Let us write the last formula as∑
n≤N

cn(w) =
E(w)

σ(w)
N2σ(w)(1 + I + II + III + IV + V).

We choose α̂0 with
32
79α0 < α̂0 < α0

and set

T = N2α0+4α̂0 .

Notice that E(w)
σ(w) is bounded in the neighborhood W ′ since σ(0) = 1. Then,

the error terms are bounded as follows:

• The error term I is O(N2(1−2α̂0−<σ(w))). By Lemma 2.1, the exponent
satisfies

2(1− 2α̂0 −<σ(w)) < 2(α0 − 3α̂0) < 0.

• For any ε1 with 0 < ε1 < α̂0/2, we can choose W ′ again from Lemma 2.1
small enough to have k<w < ε1/2 so that A(N) = O(N1+ε/2). Then the
exponent of N in II is equal to

1− 2(<σ(w) + k<w)− (2α0 + 4α̂0) ≤ −2α0 + 5
2 α̂0 < 0.

Here, recall that 0 < α0 ≤ 1/2.
• Similarly, the error term III is O(N1+k<w−2<σ(w)). The exponent satisfies

1 + k<w − 2<σ(w) < −1 + 2(α0 + α̂0) + ε1/2

< −1 + 2α0 − 7
4 α̂0 ≤ −7

4 α̂0 < 0.

• For any 0 < ξ < 1/5, we also have |L(2s, w)| ≤M |t|ξ by Lemma 2.1 where
=s = t. The error term IV is O(N2(1−α0−<σ(w))T ξ) and the exponent of
N is

2(1− α0 −<σ(w)) + (2α0 + 4α̂0)ξ

< 2(1− α0 − (1− α0 + α̂0)) + 1
5(2α0 + 4α̂0) = 2

5(α0 − 3α̂0) < 0.

• The last term V is O(T ξ−1 ·N2(1+α0−<σ(w)) logN). Hence, the exponent
satisfies

(2α0 + 4α̂0)(ξ − 1) + 2(1 + α0 −<σ(w)) + ε1/2

< −4
5(2α0 + 4α̂0) + 1

4 α̂0 + 2(2α0 − α̂0) <
12
5

(
α0 − 99

48 α̂0

)
< 0.

By taking

γ = min
(
7
4 α̂0,

2
5(3α̂0 − α0),

12
5

(
99
48 α̂0 − α0

))
,

we obtain the theorem.



Note on “Euclidean algorithms are Gaussian” 9

Finally, with 0 < γ < α0 from Theorem 3.3, the moment generating
function of the total cost C on ΩN admits a quasi-power expression

EN [exp(wC)] =
B(w)

B(0)
N2(σ(w)−σ(0))(1 +O(N−γ)).

Remark 3.4. Of course, this theorem enables us to prove Theorem A
directly from Theorem 1.1 without the smoothing process. In the following
section, we observe that the smoothing process is also doable for ΣN . This
yields the asymptotic Gaussian distribution of C on ΣN (ε).

4. Distributional analysis of C on ΣN . As before, we also define a
smoothed probability space ΣN (ε) as follows. For ε(N) = N−γ/2 and γ > 0
from Theorem 3.3, we consider the probability space

ΣN (ε) :=

N⋃
Q=N−bNε(N)c

ΣQ

with the uniform probability PN,ε. Then the moment generating function of
C on Σ(ε) is

EN [exp(wC)|ΣN (ε)] =
1

|ΣN (ε)|

N∑
Q=N−bNε(N)c

cQ(w).

Let us write Ψw(N) =
∑

n≤N cn(w). Clearly,

N∑
Q=N−bNε(N)c

cQ(w) = Ψw(N)− Ψw(N − bNε(N)c),

and |ΣN (ε)| =
∑N

Q=N−bNε(N)c cQ(0). The following smoothing process is

similar to the one in Baladi–Vallée [1] and gives information on C for ΣN (ε).

Proposition 4.1. With the same setting as in Theorem 3.3, we have

N∑
Q=N−bNε(N)c

cQ(w) = 2bNε(N)cB(w)σ(w)N2σ(w)−1(1 +O(N−γ/2)).

Proof. For simplicity, we may write Fw(N) = B(w)N2σ(w). By Theo-
rem 3.3, we have

Ψw(N)− Ψw(N − bNε(N)c)
= [Fw(N)− Fw(N − bNε(N)c)] +O(Fw(N)N−γ)

= bNε(N)cF ′w(N) +O(Fw(N)N−γ)

= bNε(N)cF ′w(N)

[
1 +O

(
1

bNε(N)c
· Fw(N)N−γ

F ′w(N)

)]
.



10 J. Lee and H.-S. Sun

Note that Fw(N)
F ′w(N) = N

2σ(w) and σ(w) is bounded, holomorphic on a neighbor-

hood W ′. Since ε(N) = N−γ/2, the last error term is equal to O(N−γ/2),
and this finishes the proof.

Therefore the moment generating function of C on ΣN (ε) satisfies

EN [exp(wC)|ΣN (ε)] =
B(w)σ(w)

B(0)
N2(σ(w)−σ(0))(1 +O(N−γ/2)),

and from Theorem 1.1 we are able to conclude the following.

Theorem B. The distribution of the total cost C on ΣN (ε) is asymp-
totically Gaussian, with speed of convergence O(1/

√
logN).

Remark 4.2. The smoothing process for ΩN and ΩN (ε) in [1] is possible,
since ΩN ′ is a subset of ΩN for N ′ < N . Thus, one can compare the different
probabilities PN,ε and PN by only dealing with subsets AN,ε in ΩN (ε) which
naturally come from ΩN . However, there is no such inclusion among ΣN ’s.
Hence, in order to have the statistical indistinguishability of the probabilistic
models ΣN and ΣN,ε, we should specify which sets should be compared. It
is sufficient to consider C−1(S) in ΣN and ΣN (ε) for any S ⊂ R≥0.

Let us denote by PN,ε the probability on ΣN (ε) with uniform density. It
is now natural to ask:

Question C. For any S ⊂ R≥0, do we have

|PN,ε(C ∈ S)− PN (C ∈ S)| = O(ε(N))?

The conjecture on the asymptotic Gaussian distribution of the length
` of continued fractions on ΣN from the introduction immediately follows
from an affirmative answer to this question since we can deduce (2.4) for
ΣN (ε) from Theorem B, which enables us to estimate PN,ε(` = k) for any
integer k. However, at this time there is no explicit idea how to study PN
on ΣN . Some computations in [4] suggest that to answer this question it
may be necessary to obtain a fundamental result on properties of ` on ΣN .
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